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Abstract

Polycystic ovary syndrome (PCOS) is a heterogeneous and complex disorder that has both adverse
reproductive and metabolic implications for affected women. However, there is generally poor
understanding of its etiology. Varying expert-based diagnostic criteria utilize some combination of oligo-
ovulation, hyperandrogenism, and the presence of polycystic ovaries. Criteria that require
hyperandrogenism tend to identify a more severe reproductive and metabolic phenotype. The phenotype
can vary by race and ethnicity, is difficult to define in the perimenarchal and perimenopausal period, and is
exacerbated by obesity. The pathophysiology involves abnormal gonadotropin secretion from a reduced
hypothalamic feedback response to circulating sex steroids, altered ovarian morphology and functional
changes, and disordered insulin action in a variety of target tissues. PCOS clusters in families and both
female and male relatives can show stigmata of the syndrome, including metabolic abnormalities.
Genome-wide association studies have identified a number of candidate regions, although their role in
contributing to PCOS is still largely unknown.
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I. Definitions and Differential Diagnosis

A. NIH/Rotterdam/AE-PCOS Society diagnostic criteria

In 1990, a group of investigators who attended a National Institutes of Health (NIH) sponsored conference
defined polycystic ovary syndrome (PCOS) as hyperandrogenism and/or hyperandrogenemia (HA) with
oligo-anovulation, excluding other endocrinopathies (on the basis of a consensus questionnaire) (1). In
2003, however, the Rotterdam consensus (based on closed session consensus among primarily European
and American investigators) expanded the diagnostic criteria to include at least two of the following
features: 1) clinical or biochemical hyperandrogenism; 2) oligo-anovulation; and 3) polycystic ovaries
(PCO), excluding the same endocrinopathies (2). An Expert Panel from the 2012 NIH Evidence-based
Methodology Workshop on PCOS recommended that clinicians use the more recent Rotterdam criteria for
diagnosis (3). Consequently, the 6–10% prevalence of PCOS (as defined by 1990 NIH criteria) has
doubled under the broader Rotterdam or Androgen Excess-PCOS Society criteria (4), with 1990 NIH-
defined PCOS being the most common phenotype (4,–6). The increased prevalence of PCOS with the
Rotterdam criteria is due to the expansion of the syndrome to include women without documented
ovulatory dysfunction or hyperandrogenism, but who have PCO (4).

Women with 1990 NIH-defined PCOS (with hyperandrogenism and oligo-ovulation) are at increased risk
of developing reproductive and metabolic abnormalities (Table 1), including infertility and type 2 diabetes
mellitus (T2DM), respectively. Although insulin resistance and obesity are commonly found in women
with PCOS, they are not part of the diagnostic criteria. Ovulatory women with PCOS have a lower body
mass index (BMI) and lesser degrees of hyperinsulinemia and hyperandrogenism than women with 1990
NIH-defined PCOS (7, 8). Women with PCO and oligo-anovulation (without androgen excess) are least
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a. Measurement of hirsutism.

b. Measurement of biochemical hyperandrogenism.

a. Ultrasound methods: morphology and size.

affected and do not fulfill the diagnosis of PCOS by the Androgen Excess-PCOS Society (again based on
expert consensus within the society), which, like the 1990 NIH criteria, emphasizes hyperandrogenism (7,
9).

B. Exclusion of other endocrinopathies

To properly diagnose PCOS, clinicians need to exclude other endocrinopathies that mimic PCOS (1).
These disorders include nonclassic adrenal hyperplasia, Cushing's syndrome, androgen-producing tumors,
and drug-induced androgen excess. In addition, clinicians should rule out ovulatory dysfunction from other
causes, including thyroid dysfunction and hyperprolactinemia, as well as pregnancy in reproductive-aged
women.

C. Evaluation of features

1. Androgen excess

Hirsutism is excessive terminal (coarse) hair that appears in a male (midline)
pattern (10) and should be distinguished from hypertrichosis, which is a diffuse increase in hair follicles. It
is exacerbated by elevated circulating androgen levels and the conversion of T to DHT by 5α-reductase in
the pilosebaceous unit (11). This, in turn, leads to the transformation of thin less visible vellus hair to
terminal hair through androgen receptor activation in the pilosebaceous unit. Other growth factors and
cytokines also contribute to pilosebaceous unit differentiation (12). Racial factors affecting the initial
density of pilosebaceous units and their responsiveness to androgens and other hormones may result in
differences in hair distribution and density in women with PCOS. For example, women of European
ancestry with PCOS tend to have more marked midline hirsutism than women of East Asian ancestry (13)
but a similar amount as African Americans (14). Consequently, scales of hirsutism assessment, such as the
modified Ferriman-Gallwey scale (15), will have varying cutoffs depending on race (16).

Circulating androgen levels can also help to identify
those hirsute women with PCOS, particularly when hirsutism is severe, sudden in onset, and rapidly
progressive, or when it is associated with menstrual dysfunction, obesity, acanthosis nigricans, or
clitoromegaly (11). The accurate measurement of T requires sensitive methods that include extracting
interfering phospholipids by liquid chromatography and tandem mass spectrometry,
immunochemiluminescence, or RIA (17,–20). High-quality T and SHBG assays (performed ideally in the
follicular phase with reference values derived by comparison with normal levels in women with regular
menses) are often used to determine total T and calculated free T (11, 17, 19, 21). Serum
dehydroepiandrosterone sulfate (DHEAS) levels may be increased in women with androgen excess who
have normal T levels (22) and are used as a marker of adrenal hyperandrogenism, despite the fact the
DHEAS is a precursor of a very weak androgen (dehydroepiandrosterone [DHEA]). There are no clear
cutoffs for abnormal levels, and levels decline with age. The clinical meaning of isolated elevation in
DHEAS is uncertain (23). DHEAS levels are associated with insulin resistance in women with PCOS (24)
because they are lowered with insulin-sensitizing treatment (25). Levels are also elevated in brothers of
women with PCOS, suggesting familial clustering (26). Circulating total and free T and serum DHEAS
levels are elevated in 75% of women with 1990 NIH-defined PCOS. This is because free T, the single most
predictive assay, is increased in 60% of women with 1990 NIH-defined PCOS (27). There has been some
evidence that androstenedione is also a sensitive and specific marker of hyperandrogenism in women with
PCOS (28); however, convention and the greater availability of T assays has led to wider utilization of T in
the diagnosis of PCOS.

2. Polycystic ovaries

Clinicians, largely on the basis of transabdominal ultrasound,
originally defined polycystic ovarian morphology by the presence of 10 or more follicles measuring 2–8



b. Other imaging/screening modalities.

mm in diameter, arranged peripherally around a dense core of stroma or scattered throughout an increased
amount of stroma (29). In 2004, Rotterdam PCOS criteria updated the definition of PCO as the presence of
12 or more follicles in each ovary measuring 2–9 mm in diameter and/or an increased ovarian volume
(>10 mL) in at least one ovary (2, 30, 31). Using these criteria for PCO, the number of 2- to 5-mm follicles
positively correlates with serum androgen levels, whereas the number of 6- to 9-mm follicles negatively
correlates with fasting serum insulin and T levels, as well as BMI (30). As a result of improved ovarian
imaging, many believe this follicle number threshold value should be increased (32, 33), and an expert
panel recommended using a cutoff of ≥ 25 follicles per ovary to diagnose a polycystic ovary (34). Some
authors have argued, using principle component analysis, that follicle number per ovary correlates well
with HA and thus is a good surrogate marker for ovarian hyperandrogenism (35). Multifollicular ovaries
can be a normal stage of development in adolescence and early adulthood (36). Therefore, enlarged
ovarian size (>10 mL) may be a simpler indicator of adult PCOS than follicular number in adolescent girls
who have hyperandrogenism and oligomenorrhea for at least 2 years postmenarche (37). The prevalence of
polycystic ovary morphology is three to four times that of PCOS in epidemiological studies because
polycystic ovary morphology is commonly found in normal women (36, 38). Although some women with
polycystic ovary morphology may display a relative HA when challenged with GnRH agonist (39),
isolated polycystic ovary morphology does not indicate an endocrinopathy. Medication may affect ovarian
morphology and size, most clearly by hormonal contraception, which can lower ovarian volume over time
(39). However, it does not appear to result in complete resolution of polycystic ovary morphology in
women with PCOS (40, 41).

Magnetic resonance imaging (MRI) has the potential for greater
resolution than current ultrasound technology because it is able to image antral follicles of 1 mm in
diameter. Thus, MRI of women with PCO note higher antral follicle counts (42) and may result in more
overlap with the morphology of ovaries of normal women (43). MRI is currently used only on a research
basis.

Serum anti-Müllerian hormone (AMH), originating mostly from granulosa cells of large preantral/small
antral follicles (44, 45), has emerged as a possible surrogate marker of PCO (31, 33). Elevated serum
AMH levels in women with PCOS are related to both increased follicle numbers and granulosa cell
hypersecretion (46,–49). They also are positively correlated with LH and T levels and negatively predicted
by BMI (50, 51). Although differences in circulating AMH levels by PCOS phenotype reflect the
heterogeneity of the syndrome, threshold values to discriminate the various PCOS phenotypes remain
unclear (33, 50,–52).

3. Determination of chronic anovulation

All major classifications of PCOS include ovulatory dysfunction as a component, and it represents a major
clinical concern for most patients (53). Of note, there is incomplete understanding of the process of normal
ovulation, it varies over lifetime, and it is often difficult to measure objectively (3, 54). According to the
Androgen Excess/PCOS Society Task Force Report, as many as 85% of women with PCOS have clinical
evidence of menstrual irregularities (55).

Clinicians diagnose oligomenorrhea when menstrual cycles last longer than 35 days or occur less than
eight times a year, although women with regular menstrual cycles may nonetheless have chronic
anovulation (53, 55). Chang et al (56) reported that 16% of 316 women with PCOS (diagnosed using the
NIH 1990 criteria) had normal-appearing cycles, despite having oligo-anovulation. When compared to
anovulation, oligo-anovulation generally has a less severe phenotype (57). To confirm anovulation,
clinicians may obtain a serum progesterone level during the suspected midluteal phase of the cycle and
presume that the cycle is oligo-anovulatory if the level is lower than 3–4 ng/mL (58).

D. PCOS in puberty and reproductive aging



1. Prepubertal

Early pubarche or adrenarche has been linked to the later development of PCOS, although mechanisms are
not well defined (59). However, animal models and studies in prepubertal children suggest that early
exposure to androgens (particularly from an adrenal source) may be a risk factor for developing PCOS
(60,–62). Therefore, prospective follow-up in young children with early pubarche is warranted because
these girls (particularly if obese) may have an increased risk of developing metabolic syndrome (MetS)
(using the less stringent adolescent cutoffs) (63) and PCOS-like symptoms (64). The MetS is accepted as a
cardiovascular risk factor and consists of elevated waist circumference, systolic and/or diastolic blood
pressure, fasting blood glucose, and fasting serum triglycerides and decreased serum high-density
lipoprotein cholesterol levels.

2. Adolescence

The median age for onset of menarche in the United States is 12.4 years, with a cycle interval typically of
21–45 days in the first gynecological year (mean, 32.2 d). The flow length is usually about 7 days. Longer
cycles most often occur in the first 3 years after menarche, and the overall trend is toward shorter, more
regular cycles with increasing age. Persistent infrequent menstrual cycles merit further investigation (65).
By the third year after menarche, 60–80% of menstrual cycles are 21–34 days long, as is typical of adults
(65). The age for onset of menarche is related to the time of regular ovulatory cycles. Girls who are less
than 12 years of age at menarche have 50% ovulatory cycles by 1 year after menarche, whereas girls with
onset of menarche at 12–13 years of age or greater than 13 years need 3 or 4–5 years, respectively, to
establish 50% ovulatory cycles (66). van Hooff et al (67) assessed the risk of developing oligomenorrhea
in young women with irregular menstrual cycles, comparing those with an average cycle length of 22–34
days to those with an average cycle length of 35–41 days. At 4 years after menarche, only 10% of
adolescents with shorter average cycles had oligomenorrhea, whereas more than 50% of those with longer
average cycles remained oligomenorrheic (67). Conversely, van Hooff has shown that after 3 years of
follow-up, 12% of women with regular cycles at a mean age of 15 years develop irregular cycles at a mean
age of 18, whereas 48% of adolescents with irregular cycles at mean age of 15 achieve regular cycling by
age 18. So the predictive value of initial menstrual cyclicity history may not fully determine who is at risk
for developing PCOS. A study by Carmina et al (37) suggests that by the sixth to 10th menstrual year, 70–
80% of young women have regular ovulatory cycles.

All agree that many asymptomatic adolescent girls (range, 26–54%) have PCO by ovarian sonographic
appearance (68,–71), suggesting that PCO-like ovaries in adolescents 1.3–3.8 years after menarche may be
normal. In a 3-year study of Chilean girls with PCO-like ovaries, PCO morphology was common and did
not correlate over visits (70). The inability of clinicians to perform a transvaginal sonogram in many
adolescents further complicates the accurate diagnosis of PCOS at this age (67, 68, 70, 72, 73). Although
the diagnostic criteria are uncertain in adolescent girls, the diagnosis may lead to greater recognition of
metabolic risk factors for diabetes and cardiovascular disease (CVD), with earlier intervention preventing
these sequelae (74, 75).

3. Menopause

Studies have shown that women with PCOS can develop regular menstrual cycles with age (76,–79).
Studies suggest that with aging there are smaller ovarian volumes, smaller follicle counts, greater FSH
levels, and lower inhibin B and AMH levels (36, 80, 81). Circulating androgen levels also decline with
age, although normative data for the perimenopause remain unclear (55). Currently, there are no diagnostic
criteria for PCOS in perimenopausal or menopausal woman; however, clinicians often make a reasonable
diagnosis based upon a history of prior oligomenorrhea and hyperandrogenism (9, 82). Several studies that
used this modified PCOS diagnostic criteria have suggested increased cardiovascular risk in women with
PCOS (83,–85), whereas a prospective study of perimenopausal women with PCOS (based on the 1990
NIH definition of hyperandrogenic chronic anovulation) did not see a progressive increase in



cardiovascular risk or events with aging (86).

E. Summary

In summary, the diagnostic criteria for PCOS are based on expert consensus, not evidence. The consensus
opinion has generally agreed that the ovary is central to the disorder and that it is necessary to exclude
other endocrinological disorders before making the diagnosis. Improved and standardized androgen
assays, novel methods for documenting chronic anovulation that go beyond menstrual history, and imaging
technology may refine the diagnostic criteria. The diagnosis of PCOS in perimenarchal girls remains
problematic due to the overlap of stigmata of PCOS with normal pubertal maturation.

II. Epidemiology

A. Obesity

Many women with PCOS are overweight or obese (87,–90). Obesity in the United States affects
approximately 80% of women with PCOS (91, 92), whereas outside the United States it affects only 50%
of women with PCOS (90, 93,–96). This increased association in the United States appears to be similar to
the increased prevalence of obesity in the country overall.

Obesity does appear to exacerbate many aspects of the PCOS phenotype, particularly those risk factors
related to MetS (97). Studies have suggested that women with PCOS are at risk for nonalcoholic fatty liver
disease (98). However, it is uncertain whether PCOS is associated with body composition changes, which
(independent and/or additive to obesity) may further exacerbate reproductive and metabolic aspects of the
PCOS phenotype (99). Some studies suggest that in women with PCOS, body weight alone or BMI may
not be as important with respect to metabolic impact as fat distribution, especially the adverse effects of
centripetal obesity (100, 101). A small study by Kirchengast and Huber (102) showed a significantly
greater amount of body fat and lower amount of lean body mass in women with PCOS compared to
controls matched for age, weight, and BMI. However, an older study by Good et al (103) did not
demonstrate differences in fat distribution between women with PCOS and lean controls. Similarly, a
study involving MRI and computed tomography scans of visceral adipose tissue in women with PCOS and
BMI-matched controls found little evidence that fat distribution increased risk for PCOS (even in women
with increased waist:hip ratios) (104, 105). It also appears that if a patient had oligomenorrhea and
hyperandrogenism in adolescence, there is an increased risk of developing obesity (BMI > 40 kg/m ) and
MetS by age 24, suggesting a temporal association of PCOS with obesity even if a primary predisposition
does not exist (106). Nonetheless, evidence suggests that subcutaneous adipocyte size is increased in obese
women with PCOS, along with functional abnormalities in their adipose tissue, including a decrease in the
lipolytic effects of catecholamines and lower circulating levels of adiponectin (104, 107,–109).

It is currently debated whether obesity per se can cause PCOS. Obesity is associated with suppressed
levels of SHBG leading to higher free androgen levels and prolonged follicular phases (without
anovulation) leading to a longer menstrual cycle (110), which could be confused with a PCOS diagnosis.
Massive weight loss in obese women with PCOS, such as results from bariatric surgery, has been shown to
improve multiple reproductive and metabolic abnormalities in the syndrome (111), although there is not
consistent evidence that all aspects of the syndrome resolve (112).

B. Nutrition/exercise

Weight loss is likely an important element to reducing the severity of PCOS phenotypic expression.
Dietary modification is an important part of any weight-loss program, with most studies suggesting that
exercise alone is inadequate to improve symptoms relating to PCOS phenotype. Some studies have
suggested using a form of the Diabetes Prevention Program exercise schedule, whereby participants try to
lose one pound a week (113, 114). A clinical guideline, developed in Australia for the diagnosis and
treatment of women with PCOS, recommended lifestyle changes. These included changes in diet, exercise,
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and/or behaviors that benefit general health, including weight loss and weight gain prevention (115).
However, there exists only limited data supporting the efficacy of lifestyle change in regard to PCOS (116,
117). However, there is general consensus that weight and glycemic parameters are improved.
Furthermore, there is no clear evidence that there are any additional defects related to energy expenditure
beyond obesity that would predispose women with PCOS to weight gain or compromise their ability to
lose weight (118, 119). It is commonly thought that lowering insulin levels will result in weight loss in
women with PCOS. However, although pharmacological studies of metformin use in women with PCOS
showed insulin-lowering effects, there was no consistent pattern of weight loss (120). Similarly, women
with PCOS taking troglitazone (a thiazolidinedione) experienced a dose-response decrease in fasting and
glucose stimulated serum insulin levels and a dose-response increase in weight (121).

C. Ethnicity/race

PCOS is a common endocrinopathy in many racial and ethnic groups. Two gene loci (first identified in a
genome-wide association of Han Chinese women) were replicated in women of European ancestry; this
commonality suggests an ancient evolutionary trait (122,–124). An examination of the racial variability of
these genetic variants among publically available genomic databases provides evidence that PCOS ethnic
variations are strongly determined by the genetic background in humans (125, 126).

Ethnic variations in PCOS phenotypic expression occur in North and South American women, including
Canadians, Latinas, African Americans, Caribbean Hispanics, Icelanders, Europeans, South East Asians,
Chinese, New Zealanders, and women from the Middle East (13, 127,–133). Women of African descent
with PCOS are more likely to have hypertension and CVD risk factors, whereas Hispanic women are more
at risk for MetS and T2DM (134, 135). Despite these phenotypic differences, there may not be significant
differences in these reproductive or metabolic features in younger populations (128).

D. Endocrine-disrupting chemicals

Environmental agents can act as endocrine disrupters. Studies have associated common household objects
(known as plasticizers) with obesity, alterations in puberty, and ovulatory dysfunction (136). Specifically,
elevated levels of bisphenol A (BPA), an estrogen-mimicking compound, may contribute to the
pathogenesis of PCOS. Researchers have reported elevated levels of BPA in women with ovulatory
dysfunction (137). Bisphenol S exposure in neonatal rats appears to be linked to both PCOS-like syndrome
and abnormal glucose metabolism. Rat ovarian theca-interstitial cells cultured with BPA had elevated T
synthesis, possibly through the increased mRNA expression of enzymes involved in the steroid production
pathways (138,–141). A study of lean and overweight women with PCOS reported that both groups had
higher levels of BPA as compared to lean and overweight controls. The study also positively correlated
BPA with proxies of insulin resistance (142). These limited data, however, have not established any clear
cause-and-effect relationship with stigmata of PCOS.

E. Cardiovascular disease risk

Differences exist in several CVD risk factors between women with 1990 NIH-defined PCOS and normal
women, and these differences are more profound in obese individuals (143,–145). Impaired glucose
tolerance or T2DM from insulin resistance develops in about 40% of women with 1990 NIH-defined
PCOS by the fourth decade of life, with glycemic control worsening with age and weight gain (91, 92,
146,–148). Women with PCOS also have dyslipidemia, including low levels of high-density lipoprotein-
cholesterol; increased values of triglycerides and total and low-density lipoprotein-cholesterol; and altered
low-density lipoprotein quality (149, 150). Because 1990 NIH-defined PCOS is characterized by a
preferential increase in abdominal adiposity with weight gain, MetS is also highly prevalent in PCOS
women compared to BMI-matched controls; conversely, MetS is lower in prevalence in individuals with
less abdominal adiposity (134, 151, 152), as is the case in countries where obesity is less common (93,
153). Nevertheless, genetic, environmental, and hormonal factors coexist to regulate lipid metabolism in



women with PCOS, which is not fully explained by body weight alone (149, 154). For example, nonobese
women with PCOS exhibit elevated levels of lipoprotein-a (155). Lipoprotein-a is a stable, genetically and
racially determined, lipid-rich, low-density lipoprotein that is distinct from lipoprotein-c. It can coexist
with increased small low-density lipoprotein particles and an otherwise normal lipid profile (156). A study
reported that cholesterol efflux capacity from macrophages, a measure of high-density lipoprotein-
cholesterol function and an independent predictor of subclinical CVD, is abnormally suppressed in women
with PCOS (157).

There has been a plethora of studies linking PCOS to newer surrogate markers of CVD including increased
left ventricular mass (158), endothelial dysfunction (159, 160), and arterial stiffness (161). Adjusting for
age and BMI, women with PCOS also may be more susceptible to subclinical vascular disease than normal
women, including increased carotid-intima media thickness (162, 163) and coronary artery calcification
(164, 165), although studies have not always noted this (166).

Nevertheless, there have been limited data suggesting that women with PCOS experience increased CVD
event rates. However, this is likely due to the relatively late onset of CVD events in women in the seventh
to eighth decades of life and the paucity of studies that have included women with PCOS in this age range.
The current evidence for increased CVD morbidity and mortality comes from studies that are cross-
sectional with small numbers (167, 168), that are prospective with larger numbers but based primarily on
ovarian morphology (169, 170), or that used cohorts where the diagnosis of PCOS was uncertain and
extrapolated from existing data (83). Such studies of postmenopausal women have suggested a link
between CVD and features of PCOS (84, 171). One of the most cited articles linking CVD events to a
history of PCOS in postmenopausal women (85) has since been withdrawn by the authors due to their
inability to replicate the original results (172). There are data from a meta-analysis that suggest a higher
rate of nonfatal stroke (but not nonfatal coronary heart disease) in women with PCOS (Figure 1) (173).
There are also data to suggest that the increased CVD risk noted in younger women with PCOS may
plateau in women with PCOS as they age, and that women without PCOS may develop a more severe risk
factor profile with age (78, 86, 174). Thus, the relationship between PCOS and cardiovascular events
remains murky.

F. Cancer risk

Women with PCOS have multiple risk factors for endometrial cancer that include obesity, metabolic
abnormalities (such as diabetes and hypertension), and a history of oligomenorrhea with prolonged
exposure to unopposed estrogen. Studies have noted a 2.7-fold increased risk for developing endometrial
cancer vs the general population (175, 176). This increased endometrial cancer risk in PCOS likely applies
to a subgroup of PCOS women with obesity, because the risk is reduced but not eliminated when adjusted
for BMI (177, 178). The increased risk for this malignancy in PCOS is largely from prolonged endometrial
exposure to unopposed estrogen due to chronic anovulation (179), although secretory endometrium in
women with PCOS shows progesterone resistance with dysregulated gene expression controlling steroid
action and cell proliferation (180, 181).

Studies regarding PCOS and ovarian cancer risk are contradictory. In a long-term study of women
diagnosed with PCOS through hospital records, mortality from ovarian cancer was not increased over the
general population (170). Conversely, a case-control study of women with histologically confirmed
epithelial ovarian cancer showed an increased, age-adjusted, 2.5-fold risk of developing ovarian cancer in
women with self-reported PCOS (182). There is no apparent association of PCOS with breast cancer, and
insufficient data exist to evaluate the relationships between PCOS and uterine leiomyosarcoma or vaginal,
vulvar, or cervical cancers (6, 175).

G. Psychosocial issues

The prevalence of depression and anxiety is higher in women with PCOS than in the general population
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(183). Such mood disorders, capable of impairing quality of life, can be prominent in adolescents faced
with issues of self-presentation, in young adult women concerned with fertility, and in women of all ages
with respect to eating, overweight, and clinical manifestations of androgen excess (184, 185). A study
associated PCOS with bipolar disorder (186), although the association may be with both the disorder and
specific treatments of the disorder (187). Specifically, studies have associated valproate with weight gain
and the development of oligomenorrhea, relative HA (188), and PCO (when used to treat epilepsy) (189).
Administering valproate to normal human thecal cells in vitro has increased thecal androgen production
similar to what is seen in polycystic ovary thecal cells (190).

H. Long-term outcome of children born to mothers with polycystic ovary syndrome

The long-term reproductive and metabolic risks for offspring of women with PCOS are an area of ongoing
interest, but current data are limited. Offspring, like other first-degree relatives, are at increased risk for
developing PCOS (191, 192) and can display varying degrees of reproductive and metabolic abnormalities
(193, 194). However, not all offspring are affected, and there may be variable onset of symptoms that are
puberty dependent (39). Currently there is no screening or genetic test to predict girls who will develop
PCOS.

I. Summary

In summary, multiple factors are associated with phenotypic heterogeneity, including obesity, race, and
ethnicity. The role of other factors such as endocrine disruptors and fetal origins remains uncertain. The
best diet to prevent and control symptoms of PCOS lacks definitive scientific validation. Relevant long-
term outcomes that require further epidemiological investigation include premature cardiovascular events,
ovarian and breast cancers, and major psychiatric morbidity. Finally, the developmental issues and long-
term health outcomes of children of women with PCOS need further study.

III. Pathophysiology

A. Introduction

The pathophysiology of PCOS is complex and reflects the interactions between genetic, metabolic, fetal,
and environmental factors. The relative importance of these factors may vary in individual affected women
(Figure 2). Among these factors, disordered gonadotropin secretion, HA, insulin resistance and
hyperinsulinemia, ovarian dysfunction, and follicular arrest are prominent. The potential role of these
factors and their actions are summarized in this section.

In normal women, the adrenal glands and the ovaries secrete androgens in response to ACTH and LH,
respectively (195). Approximately half of the androgen production stems from direct secretion and half
from enzymes peripherally converting 17-ketosteroids into androstenedione (predominantly) in skin, liver,
and adipose tissue (196). The hypothalamic-pituitary axis does not directly regulate androgen production
in the adrenal glands, and intraglandular autocrine and paracrine factors also influence androgen
production throughout the body (197, 198). In women with PCOS, the ovary is the main source of
androgen, but the adrenal contributes in some 30–50% of individuals who show enhanced 17-ketosteroid
responses to ACTH (199, 200).

A consistent feature of PCOS is disordered gonadotropin secretion with elevated mean LH, low or low
normal FSH, and a persistently rapid frequency of GnRH pulse secretion (201, 202). Below, we explore
the role of HA in disrupting the normal steroidal regulation of GnRH and gonadotropin secretion.

B. Androgen excess

1. In utero

Experimentally, excess fetal T induces PCOS-like reproductive and metabolic traits in female mammals,
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from rodents to primates; however, not all features are reproduced in all models. Rodent models are
convenient and inexpensive and show various features of PCOS after intrauterine exposure to T, DHT, or
DHEA. These features include irregular or lengthened estrus cycles, increased LH pulsatility, HA, and
varied metabolic changes (203). Rodent models with green fluorescent protein-labeled GnRH neurons
show impaired progesterone inhibition of GnRH pulse firing in the presence of DHT and increased
excitatory inputs to the GnRH neuron (204). A prenatal androgenization mouse study provided further data
identifying markedly decreased progesterone receptor expression in the arcuate nucleus of the
hypothalamus combined with increased GABAergic innervation of GnRH neurons, suggesting this as a
neuroendocrine origin for PCOS (205). Prenatal T exposure alters placental steroidogenesis in rat models
(as suggested by the increased protein expression of estrogen receptors α and β and androgen receptor and
17β-hydroxysteroid dehydrogenase-2) and results in the dysregulation of lipid metabolism in adult female
offspring (206).

Sheep models of PCOS have provided useful information for a better understanding of hormonal
regulation. Sheep exposed to prenatal T had increased LH pulsatility and impaired estrogen/progesterone
feedback mechanisms, which resulted in altered ovulatory and follicular dynamics and the progressive loss
of estrus cycles (207). Sheep models of PCOS also manifest insulin resistance and PCOS ovarian
phenotype.

The most comprehensive and best PCOS mimic is found in monkeys, given their similar hypothalamic-
pituitary-ovarian and hypothalamic-pituitary-adrenal axes to humans. In this PCOS-like animal model,
excess fetal T (given exogenously prenatally) produces hormonal, reproductive, and metabolic
abnormalities. After puberty, the offspring of T-exposed monkey mothers exhibit LH hypersecretion,
ovulatory dysfunction, hyperandrogenism, and insulin resistance; in addition, roughly 50% of the offspring
have enlarged ovaries with increased follicle counts (208). Some of these changes appear developmentally
programmed in utero because second-generation female offspring also manifest elevated LH pulsatility
from reduced hypothalamic steroid-negative feedback, exaggerated T responses to chorionic gonadotropin,
diminished ovarian reserve, excess adrenal androgen production, and altered abdominal adipose
characteristics (208,–212). The monkey model has also shown that prenatal androgenization is associated
with marked infant changes in pancreatic islet morphology and function (believed to be due to aberrant
islet development), which leads to subtle adult differences in islet function, supporting postnatal islet
plasticity in adapting to changing physiological demands of aging (208, 213).

Evidence for the in utero effects of excess androgen exposure in humans is less convincing. Earlier work
had documented the occurrence of cystic ovaries and PCOS-like symptoms in girls with congenital adrenal
virilizing disorders (214). The congenital virilizing adrenal hyperplasias, particularly 21-hydroxylase
deficiency, provide the human experiment of nature regarding prenatal androgen exposure. Based on their
observation of increased LH secretion in women with congenital adrenal hyperplasia, Barnes et al (214)
hypothesized that prenatal androgen exposure altered hypothalamic-pituitary programming, resulting in an
increased tendency of LH hypersecretion at puberty, which may contribute to the ovarian
hyperandrogenism noted in adolescent and adult women with congenital adrenal hyperplasia.

Maternal T during pregnancy is elevated in women with PCOS (215), but whether this results in increased
fetal exposure is unclear, given the markedly increased levels of SHBG and abundant placental aromatase
activity during pregnancy (216). The origins of blood (fetal vs maternal) in umbilical vein samples are
uncertain, but cord blood may provide a better estimate of androgen values at birth. There have been
mixed reports about whether umbilical vein T levels are elevated in female babies born to women with
PCOS (217, 218). There is also at least one study that has shown elevated amniotic fluid T levels in
women with PCOS with female fetuses (not males) (219). However, amniotic fluid T is higher in boys than
girls, and T levels do not alter during gestation in either sex (219, 220). Additionally, a prospective study
did not demonstrate a relationship between maternal androgen levels during pregnancy and the subsequent
development of PCOS symptoms in adolescence (69).



The effect of maternal androgen levels on placental steroidogenesis has not been well researched. A study
demonstrated that higher maternal androgen levels increased 3β-hydroxysteroid dehydrogenase-1 and
decreased cytochrome P450 placental protein expression, although the study did not directly measure
placental androgen production (221).

Thus, whereas the availability of maternal androgens to the fetus is not well established, it remains
possible that excess secretion from placental and fetal steroidogenic tissue may expose the developing
hypothalamus to excess androgen before the final programming of steroid feedback and other regulatory
mechanisms (206). The intrauterine environment, which leads to fetal growth restriction, may also
contribute to an increased prevalence of hyperandrogenism and insulin resistance in girls (222), although
the association of these stigmata with growth restriction is not universal (223).

2. Pre-/peripubertal girls

Adrenarche is the gradual increase in female humans (between ages 6–8 y) of adrenal androgens, DHEA,
and DHEAS, which stimulate growth and may play a role in the activation of the hypothalamic-pituitary-
ovarian axis. Premature adrenarche has been associated with subsequent ovarian HA, PCOS, and insulin
resistance (59). The disorder may be idiopathic or may reflect increased insulin and IGF-1, which
enhances androgen responses to ACTH. Obesity is associated with hyperinsulinemia, and HA is
commonly present. Sixty-five percent of obese prepubertal and peripubertal girls (BMI > 95 percentile of
ideal body weight for age) had elevated free T levels (224, 225). During puberty, girls with a history of
premature adrenarche showed exaggerated androgen precursor responses to a GnRH agonist (226), which
was consistent with increased cytochrome P450C17 α activity. By mid puberty, the rise in LH secretion
stimulates ovarian androgen production. In insulin-resistant states, hyperinsulinemia enhances LH action.
In 2012, approximately 17% of girls aged 2–19 years were at > 95 percentile ideal body weight (227), and
this marked increase in obesity during the past 40 years has likely contributed to increased adrenal and
ovarian androgen secretion and increased predisposition to the development of the PCOS. The incidence
of premature adrenarche or pubarche among daughters of women with PCOS does not appear to be
common, although metabolic and reproductive abnormalities may not be evident until the onset of puberty
(39).

There is a surge of interest in defining early metabolic abnormalities in daughters born to women with
PCOS. Sir-Petermann et al (193) demonstrated that 30 prepubertal and 69 pubertal daughters of women
with PCOS had significantly higher ovarian volume and 2-hour insulin when compared to controls
matched for age, Tanner stage, and BMI. In Tanner stages IV and V, basal T and post-GnRH-stimulated
LH, T, and 17 hydroxyprogesterone levels were significantly higher in PCOS daughters compared to
controls, suggesting that the metabolic abnormalities appear during late puberty (193). This group had
earlier demonstrated lower levels of adiponectin in prepubertal daughters and pubertal daughters of women
with PCOS compared to controls (228). Of equal interest is a similar study that demonstrated increased
basal and stimulated DHEA levels during the onset of puberty and a modest advancement in bone age
during both childhood and peripubertal period (ages 9–13 y) (193). These studies all suggest that
reproductive abnormalities may exist in daughters of women with PCOS in early stages of sexual
development. Sir-Petermann et al (194) showed higher levels of AMH in daughters of women with PCOS
at all Tanner stages and suggested that the girls with the highest AMH levels had the most marked
metabolic derangements.

3. Adults

In late adolescence and adulthood, the ovary is the main source of excess T production in response to LH
and hyperinsulinemia. LH is the primary factor (225), with insulin augmenting ovarian theca cell androgen
secretion (229, 230). The reduction of hyperinsulinemia through dieting, metformin, or troglitazone
improves ovulatory rates and reduces plasma T by approximately 20% (121, 231, 232). A greater reduction
in T is noted when a GnRH agonist desensitizes LH and suppresses its secretion (233). The adrenal glands



continue to contribute to HA in adults with PCOS, and both basal and ACTH-stimulated androgen
responses remain elevated (compared to controls) until menopause (234).

Thus, data suggest that HA is commonly present before puberty in some patients who later develop PCOS,
and it is often associated with coincident obesity. Elevated androgens may also increase the risk of
metabolic abnormalities (235), as well as the risk of anovulation and the altered steroidal regulation of LH
secretion at the hypothalamus.

C. Effects of hyperandrogenemia on the hypothalamus-pituitary axis

Adult women with PCOS often have upper normal or elevated serum LH levels with elevated ovarian
steroids. This is associated with a rapid LH pulse secretion frequency (and by inference, a rapid GnRH
pulse secretion frequency) (236), although LH pulses can be suppressed after the infrequent ovulations. In
rats, the frequency of GnRH pulse secretion modulates gonadotropin synthesis with rapid frequency pulses
favoring α-subunit and LH β-subunit synthesis and slower frequency pulses favoring FSH β-subunit
synthesis (237). In women with PCOS, the frequency of LH pulses is persistently at the highest level,
approximately one pulse per hour before the midcycle surge. These data suggest impaired negative
regulation of the GnRH pulse generator, and studies have shown reduced sensitivity to the inhibitory
action of progesterone in the presence of estradiol (238, 239). Blocking the androgen receptor with
flutamide reverses the insensitivity to progesterone, implicating T as a causative factor in altered steroid
hormone feedback (240).

Hyperandrogenemic adolescent girls have a similar pattern of rapid frequency LH pulse secretion (241),
which is present before menarche (242). Normal early pubertal girls are highly sensitive to the inhibitory
effects of progesterone on GnRH-LH pulse secretion, and sensitivity declines as puberty progresses,
similar to what is seen in adult women at Tanner stage III. By mid to late puberty, some girls with HA have
impaired progesterone feedback, similar to adults with PCOS, and approximately half of HA adolescents
are insensitive to progesterone inhibition. The mechanisms involved in the development of pubertal
progesterone insensitivity remain unclear. The degree of free T elevation and the time since menarche
were similar in progesterone-sensitive vs -insensitive girls. The only difference detected in progesterone-
insensitive HA adolescents was elevated fasting insulin levels, suggesting that hyperinsulinemia may act
on the central nervous system (243).

The apparent acceleration of pubertal maturation in girls with HA appears related to the advancement of
day/night GnRH-LH secretory patterns (244). In early puberty (Tanner stages I and II), daytime LH pulses
are few and of low amplitude, while sleep-related secretion shows increased frequency and amplitude.
Interestingly, the frequency of sleep-related LH secretion remains constant from early through late puberty,
approximately one pulse every 2 hours. However, with advancing puberty, daytime GnRH-LH secretion
increases. By Tanner III, daytime GnRH-LH secretion equals pulse frequency during sleep, and by Tanner
IV to V, daytime GnRH-LH secretion actually exceeds pulse frequency during sleep. Thus, in late puberty
day/night patterns of LH secretion are similar to those in adult women where pulse frequency slows during
sleep in the follicular phase. In normal puberty, there is usually a gradual extension of GnRH pulse
secretion from adolescent sleep-related-only to an adult 24-hour pattern.

This normal pattern is accelerated in obese HA girls. After Tanner stage III, daytime LH pulse frequency
exceeds that during sleep, and by late puberty pulse frequencies are higher than in normal girls throughout
24 hours (Figure 3) (243).

The mechanisms controlling normal wake/sleep-related GnRH secretion remain uncertain, but could
include steroid hormones acting on the central nervous system. In normal early pubertal girls (Tanner
stages I–III), both progesterone and T increase 2-fold overnight (224) and are suppressed by
dexamethasone, suggesting an adrenal source in response to the overnight increase in ACTH.

Of interest, Collins et al (245) reported that progesterone exerts differential inhibitory feedback on GnRH,

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4591526/figure/F3/


suppressing daytime but not sleep-related secretion. T gradually increases during normal puberty (224,
246) and may impair progesterone's inhibitory effect on daytime secretion. As T rises, reduced
progesterone inhibition during the daytime leads to extended daytime secretion of GnRH and LH. The
mechanisms involved are unclear, but T might inhibit hypothalamic progesterone receptor expression
(247). The importance of progesterone and T in regulating the advancement of normal puberty remains to
be proven. However, the LH secretory patterns in obese hyperandrogenemic girls support a role for T in
pubertal maturation (248, 249). Although final proof awaits further experimentation in humans, data from
nonhuman primates provides strong support. One study exposed prepubertal female monkeys to elevated
exogenous T (3-fold) from 1 year of age. Three years later, LH pulse frequency increased 2.7-fold
compared to cholesterol-implanted controls (250). These data provide a strong basis for implicating a
gradual increase in T as a regulatory factor in normal pubertal maturation. It follows that elevating T may
accelerate the normal evolutionary pattern of GnRH pulse secretion.

D. Ovarian dysfunction and follicle development

1. Changes in folliculogenesis and follicle recruitment and oocyte developmental competence

Ovulation results from synchronized signaling by the hypothalamus, pituitary, ovarian theca cells, ovarian
granulosa cells, and the developing follicle. Growth of the primordial follicles is gonadotropin-
independent. In the preantral stage, LH receptors are expressed, leading to LH-stimulated theca cell
androgen secretion, which provides a substrate for granulosa cell estradiol production. Coordination and
interaction of LH, FSH, insulin, IGF-1, AMH, steroidogenic enzyme function, and other factors
culminates in ovulation. This process goes awry in women with PCOS where abnormal follicular
development and apparent failure to select a dominant follicle results in anovulation (251). Studies have
suggested an early defect in the folliculogenesis in PCO preceding follicular recruitment (252, 253). The
ovulatory dysfunction in PCOS is characterized by increased follicular activation, but the growth of these
follicles is arrested before they mature (254). Thus, women with PCOS have an increased proportion of
primordial follicles and a corresponding increase in activated growing (primary) follicles (253, 255). The
follicles in women with PCOS also have lower rates of atresia, which may explain why the ovaries in these
women do not undergo a premature depletion of their follicular pools (256). The arrested follicle
development can possibly be explained by the normal but relatively low circulating FSH levels (in
reference to LH levels) in women with PCOS (257), levels that are not high enough to stimulate normal
maturation processes (251). LH hypersecretion is also detrimental for follicular growth and ovulation in
women with PCOS and may cause the premature luteinization of granulosa cells by decreasing FSH
sensitivity (258,–260).

The most consistent biochemical abnormality in women with PCOS is the hypersecretion of androgens,
which reflects an intrinsic dysfunction in the theca cells (261, 262) (Figure 4). Androgens play a critical
role in impaired follicular growth by stimulating the initiation of primordial follicles and increasing the
number of small antral follicles in the early gonadotropin-independent stage (263, 264). Furthermore, the
LH hypersecretion seen in women with PCOS appears to amplify androgen production by the theca cells,
whereas FSH levels are decreased, which inhibits follicular growth. This is further supported by the
hyperresponsiveness of plasma 17-hydroxyprogesterone to a GnRH agonist challenge (265). Of note,
women with PCOS and normal androgen levels may still have hyperandrogenic responses to a GnRH
agonist challenge (266, 267). Insulin may also contribute to the inhibition of follicular maturation,
especially at later stages when insulin, together with LH, inhibits granulosa cell proliferation and disrupts
estrogen and progesterone synthesis (263, 268).

Although androgen excess is detrimental to FSH-stimulated folliculogenesis, there is evidence that lower
levels of androgens have a beneficial impact on folliculogenesis (269). These findings demonstrate that
androgens attenuate follicular atresia through nuclear and extranuclear signaling pathways by enhancing
the expression of the microRNA (miR) miR-125b, which suppresses proapoptotic protein expression. The
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study also indicates that, independent of transcription, androgens enhance FSH receptor expression, which
then augments FSH-mediated follicle growth and development. These data suggest that it is a delicate
balance between androgen excess and diminished circulating androgens, and alternate mechanisms might
contribute to the unregulated follicle growth seen in PCOS.

Intraovarian factors involving follicular recruitment and growth—such as members of the TGF-β family
(ie, AMH, inhibins, activins, bone morphogenic proteins, and growth differentiation factors [GDFs]), other
growth factors, and cytokines (270, 271)—may also contribute to the abnormal follicle development and
function seen in PCOS (260). The oocyte and its surrounding granulosa cells produce many of these
factors because there is a close interaction between the signaling systems of the granulosa cells and
oocytes (272, 273).

Gene expression of GDF9, an oocyte-derived growth factor affecting theca cell layer formation (274), is
reduced in ovaries of anovulatory PCOS women (275), linking dysregulated oocyte GDF9 gene expression
with altered folliculogenesis. AMH, a potential PCOS marker (35) produced by increased numbers of
preantral and small antral follicles (276), may enhance theca cell androgen activity by inhibiting FSH and
follicular development (272, 277). Reduced AMH protein levels in small primordial follicles and
transitional follicles of anovulatory PCOS women may initially promote the recruitment of growing
follicles and their oocytes (278), whereas increased granulosa cell AMH hypersecretion in small antral
PCOS follicles could later impair further follicle growth (46, 47). In addition, decreased inhibin A and B
levels occur in some small PCOS follicles despite normal amounts of activin and follistatin unbound to
activin (279, 280). The roles of these TGF-β superfamily members in PCOS follicles remain to be clearly
defined, as does a possible permissive effect of increased IGF-1 bioavailability on granulosa cell
proliferation and steroidogenesis (54).

Intrafollicular cytokines and growth factors also affect oocyte development. Improved oocyte quality
accompanies increased levels of granulocyte colony-stimulating factor; IL-12, IL-6, IL-8, and IL-18;
brain-derived neurotropic factor; bone morphogenic protein 2; and amphiregulin, as well as decreased
levels of IL-1 and IL-12 and vascular endothelial growth factor isoform (54). It is unclear, however, which
cytokines and growth factors in follicular fluid are relevant for determining oocyte quality in PCOS (54).

E. Insulin sensitivity and secretion

Insulin resistance and its compensatory hyperinsulinemia are hallmarks of PCOS, and this puts women
with PCOS at an increased risk of impaired glucose tolerance and T2DM (99, 281).

Research has shown that up to 30–40% of women with PCOS have impaired glucose tolerance and as
many as 10% develop T2DM by the age of 40 (91, 92, 97, 282). Of note, there might be ethnic differences
in the risk for glucose intolerance in PCOS (Italians, for example, display a lower risk) (282). And whereas
obesity increases insulin resistance, lean women with PCOS have the same level of insulin sensitivity as
obese controls (99, 104, 283), or in some cases lean controls (284, 285). The reason for not detecting
differences in insulin sensitivity in lean women with PCOS might be explained by racial/ethnic
differences, and this warrants further investigation (286, 287). Women with 1990 NIH-defined PCOS,
which includes HA, have greater insulin resistance compared to anovulatory women with PCOS who have
normal androgen levels and are relatively healthier metabolically (288,–290), whereas a relatively normal
weight (BMI < 27 kg/m ) significantly ameliorates this metabolic risk (134, 291). This highlights the
importance of stratifying for phenotype. Compensatory hyperinsulinemia from insulin resistance can act at
the dermis to induce acanthosis nigricans and skin tags (292,–294).

Furthermore, the varying effects of obesity and ethnicity on insulin action might be due, in part, to defects
in insulin secretion and reduced hepatic insulin clearance (295,–297). Decompensation in insulin secretion
in women with PCOS likely plays an important etiological role in the development of T2DM (296), and
studies have shown that defects in insulin secretion are inherited in PCOS families (298). Studies have also
shown that insulin sensitivity and insulin secretion have a hyperbolic and interdependent relationship
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a. Muscle.

(299), and thus must be viewed one in the context of the other, using measures such as the disposition
index (an integrated measure of pancreatic insulin secretion and peripheral insulin sensitivity) (300, 301).

Importantly, insulin may play both direct and indirect roles in the pathogenesis of androgen excess in
PCOS. Insulin stimulates ovarian androgen production and reduces hepatic SHBG synthesis, thereby
increasing the levels of total and bioavailable androgens (302, 303). Insulin acts synergistically with LH to
enhance theca cell androgen production in women with PCOS by activating a specific signaling pathway
via its own receptor (304,–306). In addition, insulin can stimulate human theca cell proliferation (307) and
can enhance ovarian growth and follicular cyst formation in rats (308). However, evidence suggests that T
levels are similar among the hyperandrogenic PCOS phenotypes (191, 192), which argues against a
primary role for insulin in the pathogenesis of androgen excess.

When measuring insulin action and secretion, it is important to use methods that have both high sensitivity
and high specificity. Both the euglycemic hyperinsulinemic clamp (309) and the frequent-sampling,
intravenous glucose tolerance test (with minimal model analysis) are “gold standard” methods for
measuring insulin sensitivity and secretion (310), whereas methods like homeostasis model of assessment
for insulin resistance and oral glucose stimulated insulin sensitivity (eg, the Matsuda model) are less
sensitive (311,–313). There is no simple validated clinical test of insulin sensitivity.

1. Insulin resistance in muscle and adipose tissue

Insulin-mediated glucose uptake is limited to tissues that express the insulin-responsive glucose transporter
GLUT4, such as cardiac and skeletal muscle and adipose tissue. Interestingly, studies have also reported
GLUT4 expression in granulosa cells (314). Insulin also stimulates amino acid uptake and suppresses
hepatic glucose production and lipolysis. A central question in PCOS is why there is resistance to some
actions of insulin (eg, metabolic), whereas insulin action on steroidogenesis seems to be preserved.

Insulin resistance in skeletal muscle is defined as impaired glucose transport and muscle glycogen
synthesis in response to insulin. And we define insulin resistance in adipose tissue as impaired glucose
transport and the suppressed inhibition of lipolysis in response to insulin (315). Studies have found that
free fatty acids induce insulin resistance and impair insulin action in obesity, T2DM, and PCOS (316,
317). Some research suggests that there are fat depot-specific differences in adipocyte lipolysis, and that
visceral adipocytes are a main source of increased portal vein free fatty acids that can contribute further to
hepatic-mediated insulin resistance. Other published works have extensively reviewed the molecular
defects responsible for aberrant activities in skeletal muscle and adipose tissue and provide a more
comprehensive review of this aspect of the pathophysiology of PCOS (318).

One study reported intrinsic abnormalities in glucose transport and insulin signaling in
myotubes from affected women, and that these abnormalities contribute to insulin resistance (319).
Another study reported impaired insulin responsiveness but not impaired sensitivity, and no change in
GLUT4 protein expression (320). Another study found no evidence for defects in insulin-stimulated
glycogen synthase activity in myotubes from women with PCOS (321). Research has demonstrated that
one mechanism for the postbinding defect in skeletal muscle insulin signaling appears to be constitutive
serine phosphorylation of the insulin receptor and downstream signaling molecules, such as insulin
receptor substrate-1 (IRS-1) (319, 322, 323). There is an increased serine phosphorylation of insulin
receptors in the skeletal muscle of women with PCOS (322). The decreased insulin-mediated (euglycemic
hyperinsulinemic clamp) activation of skeletal muscle phosphatidylinositol 3 in vivo in PCOS is consistent
with the serine phosphorylation-mediated impairment of insulin signaling (324). Decreases in protein
kinase B (Akt) activation and Akt substrate of 160 kDa (238), which are downstream of
phosphatidylinositol 3-kinase (AS160), are also consistent with a primary defect in insulin receptor-
mediated signaling. The constitutive activation of kinases in the extracellular signal-regulated kinases 1/2
contributes to the increased serine phosphorylation of IRS-1 (323). These findings provide evidence of
selective insulin resistance in skeletal muscle.



b. Adipocytes and adipose tissue.

In addition to insulin signaling defects in the skeletal muscle of women with PCOS, research has also
suggested that mitochondrial dysfunction is involved in PCOS (325). One study demonstrated
mitochondrial dysfunction by reporting a decreased expression of genes involved in mitochondrial
oxidative metabolism, such as peroxisome proliferator-activated receptor γ coactivator-1 α. However, the
study found no differences in mitochondrial number or function in cultured myotubes (321), indicating that
changes in mitochondrial gene expression in PCOS skeletal muscle are not a primary defect.

One study demonstrated that T exposure in female rats impairs insulin signal transduction (326), and a
second study found similar signaling impairment in skeletal muscle from women with PCOS (319).
Moreover, studies showed that T and DHT exposure in female rats reduces whole-body insulin sensitivity
by modifying skeletal morphology, including reducing the number of insulin-sensitive fibers, increasing
the number of less insulin-sensitive muscle fibers, reducing capillary density, impairing glycogen synthase
activity, and decreasing GLUT4 protein expression (327,–332). Importantly, studies have shown persistent
defects in insulin action and/or signaling in cultured PCOS myotubes and a decreased responsiveness to
insulin-stimulated glucose uptake (320, 321).

In vitro studies indicate that androgens can directly induce selective
insulin resistance in the adipocytes of women by acting via the androgen receptor (333, 334). Adipocytes
from women with PCOS display decreased insulin sensitivity (319, 335,–337). Studies have shown that
the number of insulin receptors and their affinity for insulin appear to be normal, suggesting a postbinding
defect in insulin signaling in adipocytes (108, 335, 336). Furthermore, reduced insulin responsiveness
indicates postreceptor alterations that are probably related to the reduced levels of GLUT4 in the
adipocytes of women with PCOS (336, 338). A study also noted increased miRNA93 expression in
adipose tissue from women with PCOS, which inhibits GLUT4 gene expression (339). No studies have
found major differences in the expression or activity of proteins in the insulin-signaling pathway
downstream from insulin receptors in isolated adipocytes. There have been reports, however, of increased
levels of phosphatidylinositol 3-kinase together with impaired phosphorylation pattern of IRS-1 in adipose
tissue (333, 334).

Although skeletal muscle accounts for 85% of insulin-stimulated glucose uptake in the body (340), it is
important to note that modest changes in adipose tissue glucose uptake may have substantial secondary
effects on whole-body glucose metabolism as demonstrated in mice (341). Therefore, it is possible that the
molecular defects observed in the insulin-signaling pathway of adipocytes from women with PCOS may
have a significant effect on whole-body insulin resistance (342). Further research is needed to elucidate the
altered molecular pathways in adipose tissue of women with PCOS.

F. Obesity, fat distribution, and adipose tissue function and morphology

It is well established that women with PCOS are often overweight or obese, and it is possible that the
increasing global prevalence of obesity may play a key role in promoting the development of PCOS in
susceptible individuals (343). A prevalence study investigated whether obesity increases the risk of PCOS
in the general population. It demonstrated that the prevalence rates of PCOS in underweight, normal-
weight, overweight, and obese women were 8.2, 9.8, 9.9, and 9.0%, respectively, similar to that observed
in the general population (96). These results suggest that the risk of PCOS is only minimally increased
with obesity. On the other hand, a Spanish prevalence study among overweight and obese subjects
demonstrated a 28.3% prevalence of PCOS, which is markedly higher than the 5.5% prevalence of PCOS
in lean women (93). Thus, the effect of obesity may vary by race and ethnicity. Obesity can also
exacerbate pre-existing clinical, hormonal, and metabolic features in women with PCOS (343). In
addition, studies have associated HA with abdominal fat accumulation in women and lower levels of
circulating SHBG (344, 345). Iatrogenic HA increases visceral fat accumulation in female-to-male
transsexuals (346). Furthermore, administering androgen receptor antagonists to women with PCOS
decreased visceral/subcutaneous fat mass together with circulating androgens (347). Studies have also
associated androgen exposure with increased fat accumulation in animals (332, 348). Studies exploring the



effects of weight loss in obese women with PCOS support the impact of obesity on the severity of PCOS.
Weight loss through diet, exercise, and lifestyle management reduces circulating androgens and increases
SHBG levels (95), reduces ovarian volume and follicle count (349), improves insulin sensitivity, reduces
hyperinsulinemia (95, 350, 351), and improves menstrual cyclicity and fertility (95, 349). The degree of
weight loss (and the requisite time frame) necessary to induce significant improvement in the reproductive
phenotype in women with PCOS remains poorly understood (343, 352). Obesity and other adipose tissue-
related factors may, therefore, play a critical role in the promotion and/or the maintenance of PCOS.

Whether women with PCOS have increased amounts of abdominal/visceral fat accumulation remains
uncertain. Clinicians can measure fat distribution using various methodologies, ranging from less-sensitive
measures (such as waist circumference), to more accurate dual-energy x-ray absorptiometry-derived
measures, to gold standard measures using computerized tomography or MRI. Two MRI studies
demonstrated that although increased waist:hip ratio measurements indicated abdominal/visceral fat
accumulation, MRI did not show this accumulation (104, 105). Subsequently, one study demonstrated
lower visceral fat among lean women with PCOS (353), and another found larger accumulations of
visceral fat among both normal-weight and overweight women with PCOS (354). However, these studies
used different imaging protocols (ie, single slice vs multislice) and differing PCOS inclusion criteria,
which may explain the conflicting results. Future studies should include cohorts of adequate size to control
for confounders, use consistent diagnostic criteria, and utilize standardized MRI-based morphology. Such
studies would further increase our understanding of the impact of obesity on abdominal/visceral fat
accumulation.

1. Impaired adipocyte function

Studies have reported abnormal adipocyte function in women with PCOS. Examples include the disrupted
secretion and release of adipokines from adipose tissue (eg, low circulating adiponectin levels) (104, 355);
increased serum, adipocyte, and adipose tissue retinol-binding protein 4 (356); and increased adipose
tissue and circulating visfatin (357). Several studies have associated PCOS with low-grade inflammation
based on increased levels of several inflammatory mediators (358). Importantly, many of these
inflammatory markers are produced in adipose tissue. The formation of clusters of macrophages around
dead adipocytes in crown-like structures is a primary feature of chronic low-grade inflammation (359). A
study demonstrated an increased expression of CD11c (a marker of inflammatory macrophages) and
increased crown-like structure density in subcutaneous adipose tissue in normal-weight and overweight
women with PCOS (354). These results indicate an increased inflammatory state in the adipose tissues of
women with PCOS. However, whether the altered secretion of various adipokines and inflammatory
markers is a unique feature of PCOS, a consequence of reduced insensitivity, or even a cause of the
decreased insulin sensitivity warrants further investigation.

Studies have shown enlarged abdominal subcutaneous adipocytes in women with PCOS, independent of
BMI (104, 108, 360, 361). Importantly, enlarged subcutaneous adipocytes are an independent predictor of
risk for T2DM, and adipocyte size is a major contributing factor for the proper function of adipocytes and
adipose tissue. Research has shown that enlarged fat cells and reduced serum adiponectin, together with a
large waistline, are the strongest factors predicting insulin resistance in women with PCOS, and these
appear to be central factors in the maintenance of insulin resistance in PCOS (104).

G. Increased sympathetic nerve activity

Metabolic and cardiovascular disorders are related to autonomic dysfunction (362, 363), and many of the
PCOS-related clinical characteristics—including HA, hyperinsulinemia/insulin resistance, central obesity,
hypertension, obstructive sleep apnea, and depression—are associated with increased activity in the
sympathetic nervous system. Insulin increases muscle sympathetic nerve activity by increasing glucose
metabolism in hypothalamic neurons. This suppresses inhibitory pathways between the hypothalamus and
brainstem sympathetic nerve centers (364, 365). However, the relationship between hyperinsulinemia and



sympathetic nervous system activation is complex and is affected by obesity. Obesity is associated with
high sympathetic nerve activity, and visceral activity is more closely related to increased sympathetic
activity than total and subcutaneous fat (366, 367). Thus, altered activity in the sympathetic nervous
system may play a significant role in the progression of PCOS (368).

Research has shown that general muscle sympathetic nerve activity, as measured with the direct
microneurographic technique (369), is increased in normal-weight women with PCOS compared to age-
and BMI-matched controls (370). Research has also shown that acupuncture, when combined with low-
frequency electrical stimulation and exercise, decreases the high levels of sympathetic nerve activity seen
in women with PCOS (371); however, in another study, acupuncture did not differ from a sham control in
regard to how it affected ovulation frequency (372). The latter study did not measure sympathetic nerve
activity or heart rate variability (HRV) (373).

In addition to studies that have directly measured sympathetic nerve activity, there are a number of studies
that have assessed autonomic activity through indirect measurements, such as HRV and heart rate recovery
(HRR) (374,–377). The HRV studies demonstrated increased sympathetic and decreased parasympathetic
components of HRV in women with PCOS (376, 378). The HRR studies indicated an attenuated
autonomic response as demonstrated by an exaggerated systolic blood pressure response to exercise and
delayed recovery, both of which indicate sympathetic activation and increased peripheral vessel resistance
(377). Because HRR after exercise is thought to be an indirect marker for parasympathetic activity, this
result suggests that women with PCOS have lower vagal activity (377).

The hypothesis that the sympathetic nervous system plays a role in the etiology of PCOS is further
strengthened by data showing a greater density of catecholaminergic nerve fibers in the ovaries of women
with PCOS (379, 380) and altered catecholamine metabolism in adolescents with PCOS (381). Increased
ovarian sympathetic nerve activity might exaggerate PCOS symptoms by stimulating androgen secretion
(382). Research has identified nerve growth factor (NGF), a marker of sympathetic nerve activity, in both
rodent and human ovaries; and its receptors are localized to the theca cells of the developing follicles
(383). The concept that ovarian sympathetic nerves are involved in the development of ovulatory
dysfunction and disturbed ovarian steroidogenesis arises from research showing that follicular cyst
development in estradiol valerate-treated rats is associated with anovulation and increased ovarian NGF
production (384). Researchers found that blocking the biological actions of NGF (by injecting NGF
antibodies and antisense oligonucleotides [for the low-affinity NGF receptor] into the ovaries [385] or by
injecting NGF antibodies into the peritoneal cavity) partially restored estrus cyclicity and ovulatory
capacity in estradiol valerate-treated rats (386). The best results came from the surgical denervation of the
superior ovarian nerve (the nerves associated with the secretory cells of the ovary) (382). However,
whether overproduction of NGF increases ovarian androgen production or vice versa is presently
unknown.

H. Summary

In summary, the pathophysiology of PCOS clearly involves both reproductive and metabolic
manifestations; however, there are still large gaps in identifying a common molecular mechanism that
would explain both aspects of the phenotype or the significant heterogeneity of the syndrome. There is a
lack of animal models that spontaneously develop a PCOS phenotype because most are androgen induced.
Similarly, the development of three-dimensional culture methods of human follicles that could recapitulate
the in vivo PCOS ovary environment would be a significant advance over current models that use isolated
human thecal or granulosa cell lines in two-dimensional culture. Impaired folliculogenesis and
steroidogenesis in PCOS is multifaceted and is controlled by extra- and intraovarian factors as well as
genetics. The abnormal intrafollicular environment that develops in PCOS can disturb the maturation of
the oocyte and alter the oocyte gene expression pattern that is important for oocyte development. Future
research should aim to increase our understanding of how different molecular mechanisms interact with
each other to control ovarian functions. Such studies would significantly improve our understanding of



how to correct the dysfunctional follicle growth and abnormal oocyte development that occurs in PCOS.

IV. Molecular Genetics

A. Genetic tools

PCOS is a complex polygenic disease that may involve the subtle interaction of environmental factors,
susceptibility, and protective genomic variants. Earlier studies of the genetics of PCOS suggested an
autosomal dominant mode of inheritance (387), but the recruitment of large families with multiple affected
women likely biased these studies (388). Subsequent prospective studies have revealed smaller kindreds
and a more complex inheritance pattern. In addition to the challenges inherent to gene discovery for any
common disease, there are several notable factors that further complicate research into the genetic basis of
PCOS. These include the multiple diagnostic criteria and heterogeneity of PCOS and the fact that PCOS
can be diagnosed only in women of reproductive age. As noted above, diagnosing premenarchal girls,
adolescent girls, and menopausal women is problematic. Furthermore, there is no accepted male
phenotype, although males do appear to have androgen-related and metabolic dysfunction (26, 389, 390).
Also, PCOS impairs fertility or delays fertility, which reduces family size (388, 391). Therefore, the
availability of relatives for family-based genetic studies is limited (392).

Cytogenetic approaches have not identified major chromosomal aberrations (393). Indeed, aneuploidy
rates of unfertilized oocytes in women suffering from PCOS did not differ from women with tubal factor
infertility (394). Although researchers have used both linkage analysis and association to study the
genetics of complex traits, they have not been particularly useful (395). The poor yield of such studies in
dissecting the genetic origins of PCOS similarly suggests that it is a complex genetic trait. Most published
studies of genes in PCOS have been genetic association studies of poor quality that would not meet the
current, more stringent, guidelines outlined in the Strengthening the Reporting of Observational Studies in
Epidemiology–Molecular Epidemiology statement (396). Limitations include small sample size and
diagnostic heterogeneity, population stratification, failure to examine the entire candidate gene (usually
only one variant is examined), not correcting for multiple testing (within the same study or separate reports
from the same cohort), confounding phenotypes (eg, obesity), and the lack of replication by an
independent cohort in the same study. Alternatively, researchers could examine founder populations that
are genetically more homogeneous or use family-based association studies that only require a proband and
usually both parents. Several whole genome approaches are now available that do assess the role of
positional or functional candidate genes in PCOS. Initially, researchers used microarrays with equally
distant microsatellites, but in the late 1990s, single nucleotide polymorphism (SNP) arrays spanning the
whole genome became available. Next-generation techniques sequencing either all exons or the whole
genome have become an affordable option for studying the genetic background of PCOS (397). Of course,
identifying a significant variant is only the first step. Confirming the biological relevance of PCOS-
associated variants by molecular genetic analyses (eg, expression analysis or targeted genetic disruption in
cell culture or another organism) is critical. Studies rarely perform this next step, and this a real problem
with all significant findings from genome-wide association studies (GWAS).

B. Evidence for a genetic background

1. Twin studies

There are two studies that assessed the heritability of PCOS in twins by comparing the degree of
concordance between mono- and dizygotic twin pairs (398, 399). One small study suggests that PCOS is
not the result of a single autosomal genetic defect, but that environmental factors, perhaps both intrauterine
and extrauterine, are involved in the pathogenesis of this disorder, or that PCOS may be an X-linked
disorder, or the result of polygenic factors. However, fasting insulin level, androstanediol glucuronide, and
BMI did appear to be significantly influenced by genetics (398).



The second larger study revealed a strong contribution of genetic factors to PCOS and indicates that a
model including additive genetic factors and unique environmental factors is the most parsimonious. In
this study the variance in the pathogenesis of PCOS is 72% due to genetic influences (399). The same
group published a second paper in which they tried to evaluate the prevalence of PCOS in women from
opposite-sex twin pairs compared to women from same-sex twin pairs, sisters, and female spouses of
twins. They did not report any difference in the prevalence of PCOS between these groups, indicating that
possible androgen exposure of the female fetus (caused by a shared intrauterine environment with a male
fetus) does not result in PCOS-like traits (400).

2. Family-based studies

Evidence for the role of genetics in PCOS includes a well-documented familial clustering of PCOS, with
sisters more likely to be affected with signs and symptoms of the disorder, and first-degree relatives having
higher rates of metabolic abnormalities including insulin resistance, decreased β-cell function,
dyslipidemia, and MetS. In one prospective family study, 22% of the sisters of women with PCOS fulfilled
diagnostic criteria for PCOS. In addition, another 24% of the sisters had HA combined with regular
menstrual cycles (191). Circulating T levels in both of these groups of sisters were significantly increased
compared with unaffected sisters and control women with normal menstrual cycles who did not have
PCOS. Probands, sisters with PCOS, and hyperandrogenemic sisters also had elevated DHEAS and serum
LH levels compared with control women. Studies have noted this familial aggregation of HA (with or
without oligomenorrhea) in other PCOS kindreds, which suggests that it is a genetic trait (191, 192, 401,
402).

PCOS and its associated metabolic abnormalities cluster in families, suggesting that there is a genetic
susceptibility to these defects (191, 403). Compared to unaffected sisters and women of similar age,
weight, and ethnicity, sisters and mothers of women with PCOS have higher rates of HA, insulin
resistance, and MetS (404, 405). Male relatives of women with PCOS had increased prevalence rates of
MetS and obesity compared to the general US male population. In contrast to women with PCOS and their
female relatives, the higher prevalence of MetS in male relatives was attributed to elevated BMI. These
findings suggest that the high rates of MetS in male relatives of women with PCOS are related to higher
rates of obesity compared with the general population (406, 407). Some studies have also suggested
increased rates of CVD events in parents of women with PCOS. Other studies confirm that both race and
family history of diabetes have a substantial impact on the metabolic and glycemic status of women with
PCOS. A history of T2DM in a first-degree relative appears to be an important factor in predicting the
risks of metabolic abnormalities, impaired glucose tolerance, and T2DM in women with PCOS (132, 298,
408,–410).

3. Population-based studies

Population-based (case control) studies have been more popular than family-based studies due to easier
subject recruitment (no need to obtain parental information and samples), reduced costs (no need to
genotype parents), and lower levels of identity by descent (397). And whereas population-based studies
have tested a large number of functional candidate genes for association or linkage with PCOS
phenotypes, the findings are more negative than positive. However, a lack of universally accepted
diagnostic criteria makes comparing such studies problematic. Furthermore, the particularly small sample
size of the study populations in case-control and family-based studies compared to GWAS appear to be
major limitations for population-based genetic studies of PCOS (411).

C. Candidate gene studies

Previously, PCOS genetic research predominantly used candidate gene analyses. Although this method has
identified several very promising PCOS susceptibility genes or loci (eg, fibrillin-3, genes involved in
insulin metabolism [insulin (INS), INS receptor, and INS receptor substrate 1], transcription factor 7 like



2, calpain 10, the fat mass and obesity-associated gene [FTO], SHBG, and the FSH receptor gene), no
single gene has been successfully replicated and identified as truly causative across all studies (397). A
number of substantially robust family-based studies identified and replicated a marker within the fibrillin-3
gene (412, 413), which was partially replicated by case-control studies (414, 415). The associated variant
is within a dinucleotide repeat marker, and no SNP within fibrillin-3 is as strongly associated. The latter
may account for the failure of fibrillin-3 to be significantly associated with PCOS in GWAS (122, 416).

One case-control study replicated the insulin receptor (414), and several independent studies have reported
evidence for an association with IRS-1 (417). Studies have not significantly associated the diabetes
susceptibility region of the TCF7L2 gene with the PCOS reproductive phenotype, although studies have
associated a novel region of the gene with PCOS-affected status (418). However, these findings have not
been replicated. Studies have associated the obesity susceptibility variants of the FTO gene with body
weight rather than reproductive features (419, 420), whereas other regions of the gene may be associated
with PCOS (421). The FTO allele associated with obesity represses mitochondrial thermogenesis in
adipocyte precursor cells in a tissue-autonomous manner (422). The FSH receptor is of interest because it
appears to be a GWAS locus; the case-control analysis had the usual constraints of limited sample size,
lack of replication, and high chance of a type 1 error (423).

Among the reasons for lack of replication are inadequate sample size (which could lead to false-positive or
false-negative findings) and incomplete coverage of the candidate gene (ie, many studies testing
associations with just a few variants in each gene). Lastly, the candidate gene approach can only be used if
there is an a priori hypothesis about the involvement of a given gene in the etiology of PCOS because of
its proposed role in the pathogenesis. Hence, it falls short of identifying novel genes or genes whose
functions are less well known (397).

D. Genome-wide association studies

In the first GWAS that targeted PCOS, Chinese researchers identified causative genes in Han Chinese
women who were diagnosed with PCOS using the Rotterdam criteria (122). This study only examined
women who fulfilled all three criteria (ie, ovulatory dysfunction, hyperandrogenism, and polycystic
ovarian morphology). Their discovery set included 744 PCOS cases and 895 controls. Replications
involved two independent cohorts of 2840 PCOS cases and 5012 controls from northern Han Chinese, and
498 cases and 780 controls from southern and central Han Chinese, respectively. However, it should be
mentioned that apart from the other diagnostic characteristics, T levels were only marginally elevated in
the replication cohorts. The authors of this paper identified strong evidence of associations between PCOS
and three loci (eg, 2p16.3, 2p21, and 9q33.3) that were significantly associated with PCOS. Candidates
within these loci were the FSH receptor, the LH receptor, and the DENND1A genes on chromosome 2, and
the thyroid adenoma-associated (THADA) gene on chromosome 9 (122). Several studies tried to replicate
these findings in other cohorts, mostly of European descent. One study failed to replicate the identified
SNPs (424), whereas two others did replicate at least some of the identified susceptibility loci (123, 124).
Hence, the DENND1A and THADA genes seem to be associated with PCOS in European populations and
are likely to be important in the etiology of PCOS, regardless of ethnicity. Evidence supporting a role for
the DENND1A.V2 isoform in the pathophysiology of PCOS includes the finding of increased amounts of
this variant in theca cells derived from women with PCOS and studies in which targeted overexpression of
the DENND1A.V2 isoform in theca cells obtained from normal women recapitulated hyperandrogenic
theca cell function (Figure 5) (425). The finding of the DENND1A.V2 variant in urinary exosomes of
women with PCOS may prove to be a useful diagnostic tool in the future (425). These findings illustrate
how results from GWAS can be utilized to understand the pathophysiology of PCOS. It has been suggested
that DENND1A and other proteins such as LHCGR and INSR form a signaling cascade that influences
theca cell androgen biosynthesis (426). Further research is needed to test this hypothesis.

The analysis of the LHCG receptor in the Chinese GWAS was probably not sufficiently powered to detect
modest effects (427). Subsequently, this Chinese group published another even larger GWAS in Han
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Chinese women with PCOS (also diagnosed using the Rotterdam criteria), which includes the original
cohort discussed above (416) (Figure 6). This larger study identified eight new risk loci for PCOS. For this
study, the researchers analyzed data from the previous cohort together with a new cohort of Han Chinese—
a discovery cohort of 1510 cases and 2016 controls, and a replication cohort of 8226 cases and 7578
controls. A subsequent meta-analysis in this second study confirmed the previously identified loci and
another eight new genome-wide, significant, PCOS-associated signals at 9q22.32, 11q22.1, 12q13.2,
12q14.3, 16q12.1, 19p13.3, and 20q13.2; and a second independent signal at 2p16.3 within the FSHR
gene. These newly identified loci contain genes with evidence for involvement of insulin signaling, sexual
hormone function, and T2DM. Other candidate genes were related to calcium signaling and endocytosis
(416). Previous studies had already reported the involvement of the FSHR gene. In this study, the Ser/Ser
FSHR polymorphism (located at position 608 within the intracellular portion of the FSHR) was associated
with higher serum FSH levels and seemed to represent a risk allele in normo-gonadotropic anovulatory
patients as well as in women suffering from PCOS (423). An independent study assessing a cohort of
European ancestry reported similar findings (428). These authors found strong evidence for an association
of PCOS with previously identified SNPs in the 2p16.3 locus. Important to note, the marker with the
strongest association with PCOS in the Chinese-cohort studies was not informative in the European-cohort
studies. However, the European studies did identify and genotype three other markers within this SNP, and
one of those seemed to be nominally associated with PCOS. With regard to SNP mapping, the strongest
evidence for association in the European studies was to the formerly identified FSHR. Therefore, it seems
that products of the LH-choriogonadotropin receptor and FSHR genes could be involved in the etiology of
PCOS, regardless of ethnicity (Figure 7) (428).

Another GWAS identified a gene involved in the genetic predisposition to obesity in Korean women with
PCOS, linking the GYS2 gene with PCOS and BMI. Mutations in this gene are associated with the
autosomal recessive disorder glycogen storage disease type 0 (GSD0) and, interestingly, PCO have been
noted in girls and women with glycogen storage diseases (429). The Korean GWAS also reported some
pleiotropic effects of GYS2 on childhood obesity and gestational diabetes (430). However, there was no
replication cohort in this study.

One of the two latest large GWAS expanded on these findings and examined common genetic
susceptibility loci in European ancestry women diagnosed with PCOS based on the National Institutes of
Health criteria (hyperandrogenism and chronic anovulation) (431). This GWAS also included well
phenotyped normal reproductive controls in the replication phases, instead of population-based controls.
Three loci reached genome-wide significance—two novel loci, chr 8p32.1 in the region of GATA4 and
NEIL2 and chr 11p14.1 in the region of the FSH B polypeptide gene; and one previously found in Chinese
PCOS (416), chr 9q22.32 in the region of c9orf3/FANCC. The same chr 11p14.1 SNP, rs11031006, in the
region of the FSH B polypeptide gene, also reached genome-wide significance in the meta-analysis of the
quantitative LH levels within this study. The study also found significance in the case-control meta-
analysis, with two novel loci mapping to chr 8p32.1 and chr11p14.1, and a chr 9q22.32 locus previously
found in Chinese PCOS. This same chr 11p14.1 SNP, rs11031006, also strongly associates with PCOS
diagnosis and LH levels (Figure 8).

E. Other approaches

1. Functional genomic studies

Functional genomic technologies, such as cDNA microarray, have been applied in various biological
studies to identify differentially expressed genes and obtain a global view of those genes that might be
involved in the development of PCOS. Samples of 119 known genes taken from ovaries of women with
PCOS showed differential expressions compared to samples from ovaries of normal controls (433). These
differentially expressed genes are involved in various biological functions—such as cell
division/apoptosis, regulation of gene expression, and metabolism—reflecting the complexity of clinical
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manifestations of PCOS (262, 434,–436). Most of this research studied long-term cultures of theca cells
from either PCOS or normal ovaries, which might have influenced their expression profile. However, DNA
expression profiles from whole PCOS ovaries were very similar to profiles from PCOS theca cells in long-
term cultures (433).

Another study demonstrated that morphologically indistinguishable, high-quality oocytes from women
with and without PCOS exhibit different gene expression profiles (437). Promoter analysis suggests that
androgens and other activators of nuclear receptors may play a role in differential gene expression in the
PCOS oocyte (437). Likewise, the annotation of the differentially expressed genes suggests that defects in
meiosis or early embryonic development may contribute to reduced developmental competency of PCOS
oocytes (437).

F. Pharmacogenomic studies

Several studies have examined candidate genes known to be involved in drug response and tried to identify
predictive alleles. Such studies have identified genetic regions associated with a response to metformin,
including a SNP in the serine-threonine kinase 11 gene associated with ovulation (438), and one in the
OCT-1 transporter gene associated with a favorable reduction in cholesterol (439). Studies have associated
FSHR gene polymorphisms with varying responses to gonadotropin ovulation induction, which may prove
useful in treating women with PCOS (440). However, like other candidate gene studies in women with
PCOS, replication is required from larger cohorts in multicenter clinical trials.

G. Epigenetic influences

The androgen receptor is located on the X chromosome, and it contains a polymorphic CAG repeat region
in exon 1. The length of this CAG repeat region shows an inverse relationship with androgen sensitivity.
Skewed X-inactivation could give rise to an over-representation of paternally or maternally derived
androgen receptors with different androgen sensitivity. Hence, skewing might lead to differences in
androgen sensitivity. Indeed, some patients with high serum androgen levels had a longer repeat stretch
than patients with lower serum androgen levels (441), which contradicts the expectation of longer repeats
associated with decreased androgen sensitivity. Another study compared the frequency distributions of
CAG repeat alleles and their pattern of expression via X-inactivation analysis among 83 fertile women and
122 infertile women with PCOS (442). The infertile women with PCOS exhibited a greater frequency of
CAG alleles (>22 repeats) compared to both the fertile control group and the general population. The
findings warrant a closer inspection of X-linked genes in PCOS that considers both genotype and
epigenotype because the meta-analysis of genetic association studies of CAG repeats in the androgen
receptors have shown no differences between those of controls (443).

It may be necessary to examine the epigenetic modifications to the genetic code to unravel some of the
confounding evidence. A pilot study found no significant difference in the global methylation of peripheral
leukocyte DNA between patients with PCOS and matched controls. Global methylation arrays might not
be as sensitive as approaches that target specific genes of interest. Moreover, studying methylation profiles
in leukocytes might not detect important differences that could exist between different tissues. Therefore,
methylation in specific target genes or regions as well as key tissues other than peripheral leukocytes (such
as human ovaries, adipose tissue, or adrenals) should be investigated. Aberrant DNA methylation patterns
could serve as epigenetic biomarkers for early PCOS detection, and understanding the epigenetic
mechanisms involved in PCOS may provide novel avenues for the diagnosis and treatment of this common
disorder (444).

H. Summary

Early data supporting a single gene etiology to PCOS has been refuted by multiple GWAS showing PCOS
to be consistent with a complex genetic disorder with multiple alleles associated with a small degree of
risk. There has been heterogeneity in the diagnostic criteria used to identify PCOS, as well as variability in



the design of the studies—including the choice for controls and replication strategies. Furthermore, many
GWAS remain to be published, and an eventual meta-analysis of existing GWAS in PCOS is in the
planning phase. There has been a lack of functional genomic studies to explain the possible
pathophysiological significance of identified genetic variants, although clearly the gonadotropin and
gonadotropin receptor variants are consistent with phenotypic abnormalities in PCOS.

V. Future Research Directions

As illustrated in this statement, there are multiple areas of uncertainty in the diagnosis, epidemiology,
pathophysiology, and genetics of PCOS. One of the lingering controversies is the name “polycystic ovary
syndrome,” which incompletely reflects the full reproductive and metabolic aspects of the syndrome (445).
The Expert Panel of the Scientific Statement Workshop on PCOS recommended renaming the syndrome.
The Expert Panel also generated a list of several research priorities based on the presentations and
recommendations of leading experts from around the world (Table 2).

A. Diagnosis and epidemiology

The long-term consequences of PCOS are unclear. Therefore, it is crucial to establish the diagnostic
criteria for PCOS early in adolescence. In this way, longitudinal studies can explore the natural progression
of the PCOS throughout childhood. This will help us better determine the value of interventions that target
PCOS and the various reproductive, metabolic, and psychological diseases associated with PCOS. Genetic
and environmental factors (eg, socioeconomic status, lifestyle) that contribute to ethnic variances in PCOS
are also important to consider in developing individualized strategies for treating PCOS. Better and more
convincing studies are needed to show a clear link between PCOS and environmental disruptors. Similarly,
we need to better understand how the maternal-fetal environment affects the developmental origins of
PCOS. Because experimental constraints exist on human studies, more animal models and in vitro cell
culture studies are needed to help us explore how developmentally relevant endocrine/paracrine factors
and genes interact to influence reproduction and metabolism. With such information, new clinical
strategies targeting the prevention of reproductive and metabolic dysfunction are likely to improve fertility,
reduce CVD risk, and enhance quality of life in women with PCOS.

B. Pathophysiology

PCOS is likely a heterogeneous disorder with multiple perturbations leading to a variety of final
phenotypes. A significant breakthrough in the pathophysiology of PCOS is to discover a pathway that links
hyperandrogenism, decreased insulin sensitivity, and follicle arrest, all in one phenotype. Further
examining how this pathway relates to dysfunction in affected tissues (eg, ovary, adipose, muscle, skin) is
a top research priority. The disturbed function of the hypothalamic-pituitary-ovarian axis in relation to
reproductive development, insulin-sensitizing agents, hormonal contraceptives, pregnancy, and lactation
remains poorly understood. Human mechanistic studies that examine the various ways these pathways are
disrupted will guide new treatments for women with PCOS. Similarly, larger studies that further examine
proposed dysfunctional pathways, such as acupuncture to treat sympathetic overactivity in women with
PCOS (446), may expand the use of such treatment options. Furthermore, in light of the letrozole study
(which broadened a new avenue of infertility treatment in women with PCOS) (447), the development of
newer agents that specifically target disrupted hypothalamic-pituitary-ovarian pathways in women with
PCOS appears to be promising.

C. Molecular genetics

Identifying genetic variants that would improve the diagnosis of PCOS or variants that would decrease the
heterogeneity of the syndrome remains an unfulfilled promise of genetic studies to date. GWAS from other
PCOS populations in the world (to date they have been focused on East Asian and Caucasian populations)
are anticipated, and the subsequent meta-analyses of these GWAS findings should yield more definitive
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targets for functional genomic studies. We need further research that identifies the role of the most
promising GWAS regions in creating stigmata of the PCOS phenotype. Researchers are just now
beginning to explore the functional role of some of the genetic variants linked to PCOS. These genomic
findings may lead to a better understanding of the pathophysiology of PCOS. There should be more
extensive pharmacogenomics research in women with PCOS. Prospective randomized trials that identify
response genes to therapy and their validation will help us better individualize patient care. In addition,
future epigenetic studies may provide insight into the relationship between the intrauterine environment
and the parental genetic contribution to the development of PCOS.
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Footnotes
Abbreviations:

AMH anti-Müllerian hormone
BMI body mass index
BPA bisphenol A
CVD cardiovascular disease
DHEA dehydroepiandrosterone
DHEAS DHEA sulfate
FTO fat mass and obesity-associated gene
GDF growth differentiation factor
GLUT glucose transporter
GWAS genome-wide association studies
HA hyperandrogenemia
HRR heart rate recovery
HRV heart rate variability
INS insulin
IRS-1 insulin receptor substrate-1
MetS metabolic syndrome
MRI magnetic resonance imaging
NGF nerve growth factor
PCO polycystic ovaries
PCOS polycystic ovary syndrome
SNP single nucleotide polymorphism
T2DM type 2 diabetes mellitus
THADA thyroid adenoma-associated.
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Figures and Tables

Table 1.

Current Interpretation of the Relative Effects of Dyads of PCOS Stigmata on Common Abnormalities

Hyperandrogenism and Anovulation Hyperandrogenism and PCO Anovulation and PCO

Hirsutism ++ ++ +

Infertility ++ + ++

Obesity ++ ++ +



Glucose intolerance ++ ++ +

Dyslipidemia ++ ++ +

Mood disorders ++ ++ +

Figure 1.

Meta-analysis of stroke and coronary heart disease (CHD) in women with PCOS. This figure includes a forest plot
comparing the risk of nonfatal stroke in women with PCOS compared to controls in the older age group (mean > 45 y)
(top) and a forest plot comparing risk of nonfatal CHD in women with PCOS compared to controls in the older age group
(bottom) (mean > 45 y). CI, confidence interval; M-H, Mantel-Haenszel. [Adapted from S. A. Anderson et al: Risk of
coronary heart disease and risk of stroke in women with polycystic ovary syndrome: a systematic review and meta-
analysis. Int J Cardiol. 2014;176:486–487 (173), with permission. © Elsevier.]

Figure 2.



Pathophysiology of PCOS—a vicious circle. Several theories have been proposed to explain the pathogenesis of PCOS.
One of these is that neuroendocrine defects lead to increased pulse frequency and amplitude of LH and relatively low
FSH. This causes intrinsic defects in ovarian androgen production. Also, there may be an alteration in cortisol metabolism
and excessive adrenal androgen production. Insulin resistance with compensatory hyperinsulinemia further increases
ovarian androgen production both directly and indirectly via the inhibition of hepatic SHBG production. Obesity, insulin
resistance, and high circulating androgens are associated with increased sympathetic nerve activity. E, estradiol.

Figure 3.



Day/night changes in GnRH pulse frequency in normal (open) and obese hyperandrogenemic (closed) girls through
pubertal maturation. The shaded area indicates the range of pulse frequency during sleep and is unchanged throughout
puberty. *, P < .05; **, P < .001, obese (a) vs controls. [Adapted from C.R. McCartney et al: Maturation of luteinizing
hormone (gonadotropin-releasing hormone) secretion across puberty: evidence for altered regulation in obese peripubertal
girls. J Clin Endocrinol Metab. 2009;94:56–66 (224), with permission. © The Endocrine Society.]

Figure 4.



Excessive production of sex steroids by human thecal PCOS cells from women with PCOS in response to forskolin
stimulation (mimicking gonadotropin action). [Adapted from V. L. Nelson et al: Augmented androgen production is a
stable steroidogenic phenotype of propagated theca cells from polycystic ovaries. Mol Endocrinol. 1999;13(6):946–957
(262), with permission. © The Endocrine Society.]

Figure 5.



Overexpression of DENND1A isoforms leading to increased androgen production. Forced expression of DENND1A.V2
in normal theca cells results in augmented androgen and progestin production. A, DHEA production after infection of
normal theca cells, with 0.3, 1.0, 3.0, and 10 pfu per cell of either empty (Null) or DENND1A.V2 (DENN.V2)
adenovirus, treated in the absence (C) or presence (F) of 20 μM forskolin for 72 hours. B, Quantitative Western analysis
after the infection of normal theca cells with 3 pfu Null or DENND1A.V2 adenovirus to confirm DENND1A.V2 protein
expression. C—F, DHEA (C), 17OHP4 (D), T (E), and progesterone (F) biosynthesis in normal theca cells infected with
either 3 pfu per cell of DENND1A.V2 or control (Null) adenovirus and treated in the absence (C) or presence (F) of 20
μM forskolin for 72 hours. DENND1A.V2 infection increased basal 17OHP4 (*, P < .01), T (*, P < .05), and P4 (*, P <
.05) accumulation compared with control (Null) adenovirus. DENND1A.V2 infection also increased forskolin-stimulated
DHEA (*, P < .001), 17OHP4 (**, P < .001), and P4 (**, P < .001) compared with control (Null) adenovirus. 17OHP4,
17-hydroxyprogesterone; P4, vaginal progesterone. [Adapted from J. M. McAllister et al: Overexpression of a DENND1A
isoform produces a polycystic ovary syndrome theca phenotype. Proc Natl Acad Sci USA. 2014;111(15):E1519–E1527
(425), with permission. © National Academy of Sciences, USA.]

Figure 6.



Genome-wide Manhattan plot for the GWAS meta-analysis. Shown are the −log  P values for the SNPs that passed
quality control. The solid horizontal line indicates P < 1 × 10 . Markers with 50 kb of a SNP associated with PCOS are
marked in red for those identified in a previous GWAS and replicated here and in blue for those first identified in the
current study. Associations at THADA, LHCGR, and DENND1A were also reported in a previous GWAS. [Adapted from
Y. Shi et al: Genome-wide association study identifies eight new risk loci for polycystic ovary syndrome. Nat Genet.
2012;44(9):1020–1025 (416), with permission. © Nature Publishing Group.]

Figure 7.

Median FSH levels in women with PCOS, stratified according to the number of allelic variants in the FSH receptor
[FSHR (Ser680)] and LH receptor [LHR (Asn312)], ie, carriers of zero to four polymorphic alleles. The total number of
variant alleles was significantly associated with increasing FSH levels. [Adapted from O. Valkenburg et al: Genetic
polymorphisms of GnRH and gonadotrophic hormone receptors affect the phenotype of polycystic ovary syndrome. Hum
Reprod. 2009;24(8):2014–2022 (432), with permission. © European Society of Human Reproduction and Embryology.]
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Figure 8.

Manhattan plots for LH levels in women with PCOS. Alternating blue and red colors indicate genotyped SNPs, and
accompanying black and grey colors indicate imputed variants, on odd and even chromosomes, respectively. The red
horizontal red line indicates genomewide significance. QQ plots and lGC/ lGC1000 are inset in the upper right corner of
the plot. For LH levels, P values are from sample-size weighted two-strata meta-analysis of strata-specific linear
regression P values. (Stage 1: 645 PCOS cases; Stage 2: 399 PCOS cases). (Adapted from Hayes MG, et al. Genome-wide
association of polycystic ovary syndrome implicates alterations in gonadotropin secretion in European ancestry
populations. Nat Commun. 2015;6:7502.) (431)

Table 2.

Research Recommendations by the Expert Panel of the NIH-Sponsored Evidence-Based Methodology
Workshop on PCOS

Recommendations

    Conduct adequately powered, carefully phenotyped, multiethnic cohort studies to establish the genetic or
epigenetic cause(s) of the syndrome.

    Establish the prevalence of abnormal glucose tolerance in women wishing to conceive, and determine whether
treating abnormal glucose tolerance before or early post-conception alters maternal-fetal outcomes.

    Conduct translational research to determine the mechanisms by which the syndrome alters ovarian,
hypothalamic-pituitary-adrenal, and metabolic function to establish model systems that can be used to identify novel
therapeutic approaches.

    Conduct sufficiently large, well-controlled epidemiological studies determining the prevalence, phenotypes,
and morbidities of PCOS in multiethnic longitudinal studies to determine:

        a. Whether the syndrome is associated with increased cardiovascular and diabetic complications.

        b. Whether the risk of these cardiovascular and diabetic complications (or the lack thereof) is
associated with specific phenotypes.

        c. Whether treatment of metabolic abnormalities reduces the risk of cardiovascular and diabetic
complications.

    Conduct suitably powered studies to determine whether the syndrome is associated with endometrial, breast,
and ovarian cancers, and, if so, determine optimal prevention, detection, and treatment.

    Identify optimal therapies to treat the most common symptoms and patient complaints of the syndrome, such
as hirsutism and obesity.

    Identify optimal therapies and best practices to achieve successful pregnancy.
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